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Abstract

A straight bar element containing piezoelectric members is viewed as a linear system with one electrical and two
mechanical ports where it can interact with external electrical and mechanical devices through voltage, current, forces and
velocities. A generalized force vector, with one voltage and two forces as elements, is expressed as the product of an
impedance matrix and a generalized velocity vector, with one current and two velocities, as elements. Due to symmetry and
reciprocity, this matrix is defined by four of its nine elements. Two applications are considered for a piezoelectric bar
element (PBE) that constitutes a part of a long elastic or viscoelastic bar, viz. generation and damping of extensional waves
in the bar. In the first, the PBE is driven by a given input voltage or by the output voltage from a linear power amplifier. In
the second, the PBE supplies an output voltage to an external load. In numerical simulations carried out for a specific
laminated PBE, an elastic bar, a serial RL load and a bell-shaped incident wave, the highest fraction of wave energy
dissipated was 8.1%. This is much less than the 50% achievable for a harmonic wave under condition of electrical
impedance matching.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric members in the form of thin plates, covered with conducting electrode layers, are increasingly
used as sensors, e.g. [1,2], and actuators, e.g. [3,4], in different applications. Their ability of producing
electrical output when subjected to mechanical input, and vice versa, can be derived from two coupled
constitutive equations of the piezoelectric materials [S]. These equations relate the mechanical and electrical
fields and are known as the sensor and actuator equations. The piezoelectric members have large bandwidth
and are suitable for integration in host structures.

The interactions of piezoelectric members with passive and active electrical devices and with host structures
give rise to a multitude of phenomena. The analyses of such interactions and phenomena generally involve the
full constitutive behaviour of the piezoelectric materials, and also the dynamics of the piezoelectric members,
the electrical devices and the host structures. Often, not all of these ingredients are important. If, e.g., an
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Nomenclature Greek
Latin . .
Y wave propagation coefficient
A cross-sectional area J permltt1V1ty
¢ wave speed p density
C capacitance w angular frequency
d piezoelectric constant )
D electric displacement Superscripts
e strain
E Young’s modulus av average
f frequency DC direct current
G voltage gain of unloaded amplifier E electncgl
h height M mechanical
i current .
i unit of imaginary numbers Subscripts
k square root of electromechanical cou- )
pling coefficient 0 electrical port
K stiffness 1 1st mechanical port
) length 2 2nd mechanical port
L inductance a piezoelectric layer
N normal force b bonding layer
P power c core layer
[0) charge ch characteristic
R real part of impedance, resistance D dissipated
t time G generated
U voltage I incident
v particle velocity n Input
w normalized energy, width mt mter n.al .
W energy n direction of decreasing x
X imaginary part of impedance p direction of increasing x
X axial coordinate R reflected
y transverse coordinate (horizontal) r transmmed
z transverse coordinate (vertical) tr transit
Z impedance (mechanical, electrical, or mixed)
Z impedance matrix

actuator is driven by an amplifier with output impedance that is low enough relative to the load impedance,
the sensor equation may be immaterial. If, in addition, the bandwidth of the amplifier is large enough, its
dynamics may be neglected. Also, if the transit time of mechanical waves through a piezoelectric member is
sufficiently small compared with relevant characteristic times, the member may be considered as quasi-static.
Such simplifications were natural in the early work by Crawly and de Luis [6] on the interaction
of piezoelectric actuators and beams, which, however, included the effect of shear deformation in the bonding
layers.

Actuator dynamics was taken into account, e.g., by Pan et al. [7] in the study of an Euler—Bernoulli beam
with perfectly bonded piezoelectric actuators (i.e., no shear deformation in the bonding layers). They showed
that the dynamics of the actuators has significant influence on the response of the beam, especially at locations
close to the actuators and when the driving frequency does not correspond to a resonance frequency of the
beam. Allowance for the interaction of the host structure and electrical circuits through the piezoelectric effect,
and for the two coupled constitutive equations, was made by Hagood et al. [8]. They applied a generalized
form of Hamilton’s principle to an elastic structure containing piezoelectric elements connected to an electrical
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circuit with embedded voltage and current sources and specialized their results to a cantilever beam. Similar
considerations have been made by others [9-13], in particular by Thornburgh and Chatopadhyay [9] and
Thornburgh et al. [10] who used a variational approach based on Hamilton’s principle and derived results for
cantilever plates.

While much published work on piezoelectricity concerns harmonic vibrations of beams and plates, only
little such work deals with transient extensional waves in bars. A model for generation of such waves in a
linearly elastic or viscoelastic bar by use of a perfectly bonded piezoelectric actuator pair driven by a linear
power amplifier was developed in a preceding paper [14]. This model, which allows for the coupled constitutive
equations and for the dynamics of the actuators, the amplifier and the bar, is essentially an extensional
analogue of the model for flexural vibrations used in Ref. [8]. The problem of finding the input voltage to the
amplifier required for generation of a prescribed wave output was considered, and in a subsequent
experimental study [15] good agreement was obtained between implemented and prescribed waves in an elastic
bar. This problem is of interest in control applications, such as Ref. [16], where waves prescribed on the basis
of information from sensors are used to cancel disturbing waves.

In this paper, a straight bar element containing axially oriented piezoelectric members is viewed as a linear
system with one electrical and two mechanical interfaces or ports. The element can interact with an external
electrical device at the electrical port and with external mechanical devices at the mechanical ports. These
interactions are described in terms of a voltage and a current at the electrical port and a force and a velocity at
each mechanical port. The voltage and the two forces are considered as generalized forces, and the current and
the two velocities as generalized velocities. Because of assumed linearity, the vector of generalized forces can
be expressed as the product of an impedance matrix and the vector of generalized velocities. Due to assumed
symmetry and reciprocity, this impedance matrix is defined by four of its nine elements. Once these four
impedance elements of the piezoelectric bar element (PBE) have been determined, it is straight-forward to
analyze its function as an actuator or a sensor in different environments of electrical and mechanical devices.

In Section 2, the three-port impedance model of the PBE will be presented. First, the general case will be
considered. Then the four independent elements of the impedance matrix will be determined for the specific
laminated PBE employed in the preceding theoretical [14] and experimental [15] studies of extensional wave
generation and in a parallel experimental study [17] of extensional wave damping. In Section 3, the PBE will be
considered a part of a long bar, the external parts of which are elastic or viscoelastic, and generation of
extensional waves will be studied when the PBE is driven either with a given voltage or with the output voltage
of a linear amplifier with finite output impedance. In Section 4, the same assembly of PBE and bar will be
considered, but here damping of extensional waves will be studied when the electrical port is shunted by an
external impedance load. In both Sections 3 and 4, the results obtained for a general PBE will be specialized to
the specific laminated one. Finally, the results will be discussed in Section 5, and the main conclusions will be
summarized in Section 6.

2. Three-port impedance model
2.1. General case

Consider a straight bar element containing axially oriented piezoelectric members, either on the surface or
embedded into linearly elastic or viscoelastic materials. The element is assumed to be sandwiched between
external mechanical devices with which it can interact. In particular, the element may constitute a part of a
single straight bar. In this case, the external mechanical devices are the parts of the bar external to the element
itself. The electromechanical response of the piezoelectric members is assumed to be linear.

The PBE considered is illustrated in Fig 1(a), where x is a coordinate along its axis, and y and z are
transverse coordinates. The PBE and the external mechanical devices are assumed to be symmetric with
respect to the planes xy and xz. In addition, the PBE is assumed to be symmetric with respect to the plane yz.
These symmetries of the PBE concern its geometrical, mechanical and electrical properties.

The piezoelectric members are assumed to be interconnected in such a way that the PBE can interact with
external active or passive electrical devices at a single interface or port labelled 0. At this electrical two-
terminal port, the voltage is Ug(w) and the current is ig(w), where w is the angular frequency. As shown in the
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Fig. 1. Three-port representation of (a) general PBE and (b) laminated PBE.

figure, the current is defined as positive in the direction it would be driven through the port by a positive
voltage applied externally. Here and below, the notation ¢(w) is used for the Fourier transform of a function
¢(?) of time ¢ assumed to be piecewise differentiable and absolutely integrable.

The PBE can interact with external active or passive mechanical devices at two interfaces or ports
constituted by its ends. They are perpendicular to the bar axis and are labelled 1 and 2. At these mechanical
ports the normal forces are N 1(w) and N 2(w), and the velocities are 0;(w) and 7(w). As shown, the forces
are defined as positive in tension and the velocities in the direction of the x-axis. Generalized forces and
velocities related to bending or torsion are assumed not to be generated by the PBE, by the external devices or
by their interaction.

The power supplied to the PBE at the different interfaces is Uiy, N1(—v;) and N,v,. Therefore, Uy, N1, N>
and iy, —d;, 0, are chosen as generalized forces and velocities, respectively. Because of assumed linearity, the
generalized forces are related to the generalized velocities by

Uy Zow Zo Zon] i
Ni|=1|Zw Zu Zn||-b ], (1)
N, Zy Zn Zn||h

where Zy(w), Zoi(w),...,Zx»n(w) are the elements of a 3 x 3 impedance matrix Z(w). This matrix has the

property Z(—w) = Z(w), where Z denotes the complex conjugate of Z. Thus, real and imaginary parts of Z are
even and odd functions, respectively, of w.
By the assumption of reciprocity, the impedance matrix is symmetric and therefore

Ziw=Zoy, Zn=Zpn, Zn=Zpo. (2a—c)
Because of the symmetry with respect to the plane yz, the subscripts 1 and 2 are interchangeable and therefore
Zp=Zy, Zn=Z2Zyo, Zn=Zn. (2d-1)

As far as its electrical and mechanical interactions with external devices are concerned, the PBE can be
represented by the impedance matrix Z defined by the four elements Zyy, Zo (= Zig = Zro = Zo»), Z11
(= Z») and Z1, ( = Z»;). The nature of Z is electrical, that of Z; is electromechanical and that of Z;; and
Z 15, is mechanical. The units of these impedances are V/A = 2, N/A = Vs/m and Ns/m, respectively.



A. Jansson, B. Lundberg | Journal of Sound and Vibration 315 (2008) 985-1002 989

Consider now a PBE with imaginary impedance matrix, ZU =iX;. Also, let the generalized forces and
velocities be harmonic with angular frequency w and mterpret Us, N1, N, and iy, —0y, B, as complex effective

amplitudes. Then, the total average power P = Re[U()zo +Ni(=0)+ N »05] supplied to the PBE at its three
ports can be shown to be zero. Therefore, an imaginary impedance matrix represents a PBE that is lossless.

In the absence of piezoelectricity, the elements of the impedance matrix become Zj = Z’;; with the
electromechanical coupling elements zero, i.e., Z, = Z}, = Zy, = Zy, = 0. Therefore, Eq. (1) splits up into
the two uncoupled relations

Ny

A

! !
le Zl2

Uy = Z)i
000> / /
Zy Iy

o (3a.b)
. . a,
2 )

Next, it will be shown for a specific laminated PBE how the elements of the impedance matrix Z depend on
the geometry and the materials. Such a PBE, serving as an actuator, was studied theoretically with a different
approach in Ref. [14]. In that study, the properties of the PBE itself, isolated from its mechanical and electrical
environment, were not considered as here. It was investigated experimentally in Ref. [15].

2.2. Specific case

Consider the specific laminated PBE shown in Fig. 1(b). Two piezoelectric layers a are attached to each side
of a core ¢ by bonding layers b, all of the same length /. The cross section of each layer is rectangular and the
full cross section is symmetric with respect to the y and z axes. The layers have heights /4, &, and A, widths w,,
wp, and w,, and cross-sectional areas A, = h,w,, Ap = hpwp and A, = h.w.. The total cross-sectional area is
A=2A4,4+2A4,+ A..

The material of the piezoelectric layers is assumed to be elastic with closed-circuit Young’s modulus E,, while the
materials of the bonding layers and the core are assumed to be viscoelastic with complex modules Ej(w) and Ew).
As special cases, one or both of the latter materials may be considered elastic by taking their complex modules as
real-valued and constant. It is assumed that initially plane cross-sections remain plane and that the stress is uni-
axial in the x direction. Therefore, the effective complex modulus of the PBE is E = (24,E, + 2A,E, + A.E.)/ A.
Similarly, the effective density of the PBE is p = (24,40, + 2A4pp, + Acp.)/ A, Where p,, pp and p. are the densities
of the piezoelectric, bonding and core layers, respectively.

The piezoelectric material is assumed to be polarized in the z direction and to have linear electromechanical
response. In addition to the closed-circuit Young’s modulus E,, this response is characterized by the
permittivity ¢, and the piezoelectric constant d, (commonly denoted —d5;). The electrical fields between the
electrodes on the upper and lower faces of the actuators are assumed to be parallel to the z-axis. The electric
displacement field is assumed to depend on x and w, while the electric field strength is assumed to depend on w
only. The electrodes of the piezoelectric layers are assumed to be connected in parallel in such a way that these
layers deform in phase when a voltage is supplied to the electrical port. The effects of strains in the transverse
directions are neglected.

In Appendix A it is shown that the four independent impedance elements of the laminated PBE are

1 ZE dehg ZM d, ZE
Zo = = 4 Zy = —1 “_— A,E,2 -4, 4a,b
W= T T A T e 1= K2 (4a,b)
kizM zM KzM o zM
le —pla%a + ch le — o la%a + ch (4C,d)

=2 sinh(7])’

Here Zf = 1/imwC, is the electrical impedance of a single mechanically unloaded piezoelectric layer with
capacitance C, = g,w,l/h,, Z = K,/iw is the quasi-static mechanical impedance of a single electrically
short-circuited piezoelectric layer with stiffness K, = 4,E,//, and k2 = dzE /e, 1s the electromechanical
coupling coefficient. Furthermore, ZCh = AE/c is the characteristic 1mpeddnce c=(E/ p)l/ 2 is the wave speed
and y = iw/c is the wave propagation coefficient. Through the definition of these parameters and of the cross-
sectional area A, the effective complex modulus E and the effective density p, the four impedance elements that
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define the impedance matrix are expressed in terms of 15 basic parameters out of which eight are related to the
materials (E,, pu, €4 dy; Ep, pp; E., pe) and seven to the geometry (h,, wg, hp, Wy, he, we, [) of the PBE.

If the layers b and c are elastic, then E, ¢ and Zé‘}’{ are real and therefore the impedance elements given by
Eq. (4) are imaginary. This implies that the impedance matrix is imaginary and confirms that such a laminated
PBE is free from losses.

In the absence of piezoelectricity d, = 0 and k, = 0, and therefore the impedance elements Z;; of Eq. (4) are
reduced to

lZE 7 =0 7 = ch:‘}{ - Zé{

2 e ol ’ "™ tanh(yl)’ 127 sinh(yl)”
In Egs. (4) and (5), the terms Z ./ tanh(y/) and Z ./ sinh (y/) determine whether the response of the PBE is

dynamic or quasi-static. At angular frequencies w <|c|//, both terms approach K/iw, where K = AE/ is the

stiffness of the PBE, and the response of the PBE is quasi-static. At such low frequencies, and in the absence of

piezoelectricity, the last two of Eq. (1) become N, =N, = K(i, — t), where & = 0 /iw and @, = 0, /iw are

displacements corresponding to the velocities ¥; and ¥;.

Zy = (5a—d)

3. Generation of extensional waves
3.1. Current and waves

Let the PBE constitute a part of a long bar, elastic or viscoelastic, and consider how extensional waves are
generated when the PBE is driven with an input voltage Uj. The external parts of the bar are assumed to be
semi-infinite and to have equal characteristic impedances Z(w) = Z,(w) as shown in Fig. 2(a). The driving
voltage produces a current iy and generates extensional waves, which propagate away from the PBE in
opposite directions. Because of the symmetry, these waves are associated with the same normal force N g(w) at
the two mechanical interfaces. In the absence of waves propagating towards the PBE, this force is related to
the interface forces and velocities by the continuity conditions

Ni=Ng, & == Ng, (6a,b)
Z
N N 1 -
N2 =Ng, 1}2 = —ng. (6C,d)
Z
As N )= N 1 and 0, = —0;, the last two of the three scalar equatlons (1) are the same. Therefore, Eqs (1

dnd (6) provide six independent equations for the six unknowns iy, 0, vz,N 1,N ,and N G- Solving for i, and

N , one obtains
¢ a Zn+Zn+ 2 ~

= 5~ U, (7)
Zo(Zn+ Zi+ Z)) —2Z,
N ZoZ N
Ng= ol - U (8)
Zow(Z+Zin+Z)) - 27,

The internal (input) impedance is ZE =U, / io, i.e., 5
ZE — 7y P ©)

mee Zu+Zn+2

It depends on the four impedances characterizing the PBE and on the characteristic impedance of the external

parts of the bar. The equivalent electrical circuit is shown in Fig. 2(b).

3.2. Energy

Temporarily, let the assembly consist of a lossless PBE with imaginary impedance matrix, Z; = iX};, and
an elastic bar with real characteristic impedance Z; = R;. An example of such a PBE is the laminated one in
Fig. 1(b) with its bonding and core layers b and ¢ elastic. Let also the input voltage to the PBE be harmonic
and again interpret Fourier transforms as complex effective amplitudes. Then the electrical average power
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Fig. 2. Generation of extensional waves in a long viscoelastic or elastic bar. Propagation directions of generated (G) waves indicated by
arrows. (a) Interaction of PBE and bar at mechanical interfaces. Equivalent electrical circuit for PBE driven by (b) input voltage U, and
(c) linear amplifier with input voltage Uj,, voltage gain G unloaded and output impedance Z,.

E

2
mt)|i0| and the average energy flux of each of the two waves generated

supplied to the assembly is Py = Re(Z
in the bar is Pg = (I/Rl)‘NGf. Therefore, the ratio p; = Pg/Py can be determined by substituting
Egs. (7)-(9) with Z, = R, and Z; = iX}; The result is pg = 1/2 or
1
P = EPOa (10)

which confirms that energy is conserved.

3.3. Input from linear power amplifier

Fig. 2(c) shows the equivalent electrical circuit when the driving voltage Uy, is supplied by a linear power
amplifier with input voltage U;,(w), with gain G(w) unloaded and with output impedance Zy(w). Here the
driving voltage can be expressed in terms of the input voltage to the amplifier as

N ZE .
Uy =—""2 _GUj,. 11
0 Z£t+Zo in ( )

This expression shows that the voltage gain G of the unloaded amplifier is modified by the factor fon / (Zﬁt +
Zo) when the amplifier is loaded by the internal (input) impedance Zflt of the PBE. In the special case
Zy/ZE, =0, Eq. (11) becomes Uy = GUj,.

nt
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Substituting Eq. (11) into Egs. (7) and (8), one can express the current i, driven into the PBE and the waves
Ng generated in the bar in terms of the input voltage Uin to the amplifier. Specializing to the laminated PBE
by introducing also the impedance elements (4), one obtains expressions for, e.g., Ng and ZZ, that agree with
those of Ref. [14].

int

3.4. Other cases

Results for other cases of mechanical environment can be obtained from Egs. (6)—(9) by considering extreme
limits of the characteristic impedance Z; of the bars, by replacing Z; by impedances of other mechanical
devices and by considering symmetry. The first two ways lead to results for new symmetric systems, while the
third way gives results for new asymmetric systems.

Results for a PBE sandwiched between rigid walls is obtained in the limit Z; — oo. For such a system, the
internal impedance is ZE = Zg. Similarly, results for a PBE free at both of its mechanical interfaces is
obtained for Z; = 0. For such a system, the internal impedance is Z, = Zoy — 223, /(Z11 + Z12).

Consider next a case where the two semi-infinite bars are replaced by finite bars, free at their outer ends and
with length /;, wave speed ¢; and characteristic impedance Z;. Then, instead of Z;, the impedance faced by the
PBE at each mechanical port is Z; tanh (y,/;) with y; = iw/c;. Therefore, the forces and velocities at the
mechanical interfaces, the current at the electrical interface and the internal impedance can be obtained by
replacing Z; by Z; tanh (y,/;) in the corresponding results for the semi-infinite bars. However, it should be
noted that here Ng does not represent outgoing waves.

Because of the assumed symmetry, the particle velocity is zero at the mid-plane x = 0 of the PBE.
Furthermore, no current can pass through this plane. Therefore, results can be obtained for, say, the right half
of each of the above systems with a rigid non-conducting wall on its left side. In these cases, the current given
by Eq. (7) is halved and correspondingly the internal impedance given by Eq. (9) is doubled. In the absence of
piezoelectricity, ZE = Zj, in the symmetrical cases and Z%, = 27 in the asymmetrical cases.

4. Damping of extensional waves
4.1. Voltage, current and waves

Let again the PBE constitute a part of a long viscoelastic bar with characteristic impedance Z(w) = Z,(w), but
now let the electrical port be shunted by an external impedance load Zy(w) as shown in Fig. 3(a). Also, let an
incident wave propagating towards the PBE be represented by the normal force Ni(w) at the first mechanical
interface, and consider the generation of a voltage Uy and a current —i, at the electric port, and reflected and
transmitted waves Ng(w) and N7 (w) at the first and second mechanical interfaces, respectively. The forces
associated with the three waves are related to the interface forces and velocities by the continuity conditions

A

U
Ni=N;+ Ng, UIZZ_(_NI+NR)9 (12a,b)
1

N . 1
N2=NT, 52=——NT (12c,d)
V4
The voltage and current at the electrical port are related by

Uo = Zo(—io). (12¢)
_Here, Egs. (1) and (12) provide eight Aindependent equations for the eight unknowns i, b1, 0, U, N1,

Nj, Ng and N7. Solving first for Uy and —iy, one obtains
A 2ZO]ZO A

_ R, (13a)
Zn+Zin+Z ) Zo+ Zy) — 27,
N 2Z ~
iy = o1 Ny (13b)

(Zv + Zia+ Z ) Zo + Zo) — 275,



A. Jansson, B. Lundberg | Journal of Sound and Vibration 315 (2008) 985-1002 993

()

(b)

| ——»

R<~—— —f—>T

Fig. 3. Damping of extensional waves in a long viscoelastic or elastic bar. Propagation directions of incident ([), reflected (R) and
transmitted (7)) waves indicated by arrows. (a) Interaction of PBE and bar at mechanical interfaces. (b) Equivalent electrical circuit for
PBE feeding shunted impedance load Z,,.

The first of these equations can be rewritten as

~ Zy - ~ 27y .

Up= = Ui, Upy=o—t
0T ZE Lz, 0™ " Zu+Zn+ 7,

nt

(14a,b)

where Z£ (w) is the internal (output) impedance given by Eq. (9) and Uini(w) is the internal voltage generated by
the incident wave. The equivalent electrical circuit is shown in Fig. 3(b). Solving also for Nz and N, one obtains

K= (23— Z3, — Z)(Zoo + Zo) — 2Z5(Z1 — Z12) X, (152)
(Zn+Z) = Z2)Zoo + Zo) = 22%(Zv — Zin+ Z1)

. 2Z1(Zo(Zoo + Zo) — Z; .
NT — > 21( 12( 00 + O) > Ol) N (lsb)
(Zn+ 2y = Zp)Zo + Zo) = 225((Z11 — Z12 + Zy)
In the absence of piezoelectricity Z; = Z;; and Zj; = 0, and these relations become
. Z/2 _ Z/Z _ 22 . . 27 Z/ .
Np—= 11 12 1 7, <12 N (l6a,b)

(Zy+ 2 -2, (Zy+2Z) -2,

4.2. Energy

The energy delivered to the external load Z; at time ¢ is

Wo = /0 Us(—i) dr. (17)
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and the energies associated with the complete incident, reflected and transmitted waves are

1 2 1 2 1 2
= = 1 .
1/0 Ni(Hdt, Wg 1/0 Nx()dt, Wy 1/0 N7(1)dt, (18a—c)

respectively. The energy dissipated in the external load after a long time is W p = W(c0), and the relative
energy dissipation is defined as

Wp = —-—. (19)

Temporarily, again, let the assembly consist of a lossless PBE with imaginary impedance matrix, Z; = iXj;,
and an elastic bar with real characteristic impedance Z; = R;. Let also the incident wave be harmonic and
interpret again Fourier transforms as complex effective amplitudes. Furthermore, let the impedance of the

external load Zy = Ry + 11X be chosen as the complex conjugate of the internal impedance th in order to

maximize the supply of electrical power to the load, i.e., Zy = 7t Then, the average energy flux of the

mnt*

incident wave is P; = (I/RI)‘]V1|2, and those of the reflected and transmitted waves are Pr = (1/R1)]NR‘2 and

, respectively. Due to the impedance matching, the electrical average power dissipated in the

load can be expressed as Pp = (I/Ro)’Uim/2|2. Therefore, the ratios pp = Pr/P;, pr = Pr/P; and pp, =
Pp/P; can be determined by substituting Egs. (9), (14b) and (15) with Z, = Ry, Z; = iX;; and Ry = Re(ZE
The result is pg = py =1 and p;, = 4. Therefore

nt

Pr=Pr=1iP;, Pp=1P, (20a,b)
which confirms that energy is conserved. Under the conditions assumed, the reflected and transmitted waves

turn out to have equal magnitudes and opposite phases,

RN TR —i(Xy —Xp) ¢
KT 72 R+ i — Xo)

Ny 1)

4.3. Two-port representation

The PBE with the electrical port shunted can also be given a two-port representation similar to that given by
Eq. (3b) in the absence of piezoelectricity. By eliminating U, and i, from the four equations (1) and (12¢), one
obtains

N ARVAT RIS 22)
N, Zy Zy| |t |
where
22
Z=2Z;— ol 23
v Y Zoo+ Zo @)

Some special cases of interest are (i) closed terminals, Zy = 0 and Z” =Z; Zm/Zoo, (ii) open terminals,
Zy — oo and Z” — Zj; and (iii) absence of piezoelectricity, d, = 0 dnd Z;j’ = Z;j

4.4. Numerical results

Results of numerical simulations will be presented for damping of waves by use of a laminated PBE of the
type described in Section 2.2. The geometrical and material parameters will be those of the laminated PBE
used in the experimental wave generation tests of Ref. [15]. Thus, a long aluminium bar with square cross-
section 4.0 x 4.0mm? is considered. Over a length of /=954mm, the height of the bar is reduced
symmetrically to /. = 1.02 mm, while the width w, = 4.0 mm is the same as in the rest of the bar. This part of
the bar constitutes the core ¢ of the laminated PBE. The Young’s modulus and density of aluminium are taken
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as E. = 69 GPa and p, = 2 700 kg/m?, respectively. Two piezoelectric elements with height 4, = 0.66 mm and
width w, = 6.4 mm are bonded to the upper and lower surfaces of the core, symmetrically and along the full
length of the core. They constitute the layers a of the laminated PBE. The piezoelectric material of ceramic
type is characterized by closed-circuit Young’s modulus E, = 66 GPa, density 7 800kg/m’, piezoelectric
constant d, = 190 x 10~ m/V and permittivity ¢, = 1.6 x 10~® As/Vm. The bonding layers b are assumed to
be thin enough to be neglected.

These dimensions and material properties correspond to parameters as follows. The wave speed is
¢ = 3300m/s in the PBE and 5050 m/s in the external parts of the bar. The transit time for a wave through the
PBE is t,, = //c = 28.9 us. The characteristic impedance of the PBE is ZX = 254 Ns/m and that of the external
parts of the bar is Z; = Z, = 219 Ns/m. The capacitance of a single mechanically unloaded piezoelectric
element is C, = 14.7nF, and the electromechanical coupling coefficient is k,> = 0.150. At frequencies
approaching zero, the real part RE (w) of the internal impedance ZZ (w) of the PBE approaches the limit

nt nt
RPC(w) = 46.4Q.
The electrical load is taken as a serial RL circuit with resistance Ry and inductance L,. The load impedance

Zy = Ry +iwL is expressed as
Zy = Ry(1 +imty), (24)
where 19 = Lo/ Ry is a characteristic time. The incident wave is defined by the bell-shaped pulse
Ny = Nysin® (nt/11)[0() — 0(1 — 1)), (25)

where N; is the amplitude, ¢, is the duration and 0(¢) is the Heaviside unit step function.

Simulations were carried out for RO/REtC =0.2,1,5and 20, ty/t,, =0.05, 0.1, 0.2, 0.5, ..., 100 and
ti/t, €(0.1, 10). The amplitude of the incident wave was set to N; = 10N. Because of the linearity of the
system, this value is immaterial from a theoretical point of view. However, it is considered to be realistic in
experimental implementations.

The frequency dependence of the internal impedance ZZ and the load impedance Z, with Ry = RP€ and
to = t, 1s shown in Fig. 4, while Fig. 5 shows the time dependence of the normal forces N; associated with
incident waves of durations ¢; = 0.5¢, f., and 2¢,,, and the corresponding spectra. For the load of Fig. 4 and
the incident waves of Fig. 5, Fig. 6 shows the time dependence of the normal forces Nz and N associated with
the reflected and transmitted waves. Similarly, Fig. 7 shows the time dependence of the voltage U, generated
across the load, the current —i, driven into the load, and the power P, and the energy W, supplied to the load.
The dependence of the relative energy dissipation wp = Wp/W; on the normalized duration ¢;/t,. of the
incident wave for different normalized resistances R/ RiDmC and characteristic times 7/t of the load is shown in

Fig. 8.
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5. Discussion

A straight bar element containing axially oriented piezoelectric members, referred to as the PBE, has been
viewed as a linear system with one electrical and two mechanical interfaces or ports. Its interactions with
external devices have been described in terms of voltage and current at the electrical port and force and
velocity at the mechanical ports. As far as these interactions are concerned, and due to symmetry and
reciprocity assumed, it has been shown that the properties of the PBE are defined by four elements of a 3 x 3
impedance matrix. These elements have been derived for a specific laminated PBE, previously studied
theoretically [14] and experimentally [15]. The three-port model of the PBE has been applied to generation and
damping of extensional waves in a long bar.

The principal advantages of the three-port approach stem from the fact that the dynamics and
characteristics of the PBE are independent of external devices as well as of its use as actuator or sensor. The
dynamics is represented by the three scalar equation (1) for any PBE considered, while the characteristics of a
specific PBE are defined by the specific expressions for the four elements of the impedance matrix. On the one
hand, therefore, results for different environments or uses can be derived without specifying the PBE. For the
mechanical environment of an elastic or viscoelastic bar, this has been illustrated by the examples of
generation and damping of extensional waves. In these examples, the PBE is used as an actuator driven by a
linear power amplifier and as a sensor shunted by an electrical impedance, respectively. On the other hand, the
characteristics of a specific PBE can be derived without reference to its environment or use. This has been
illustrated by the derivation of the impedance elements of a specific laminated PBE.

When results are to be derived for a certain environment and use of a general PBE, a few equations
representing the external devices must be added to the three scalar equations (1). This has been illustrated in
the examples of generation and damping of extensional waves. Thus, for the mechanical environment of an
elastic or viscoelastic bar, the five equations (6) and (11) were added in the first and the five equations (12) in
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the second of these examples. The addition of equations results in linear systems of equations that can be
solved for voltage, current, forces and velocities. From the solutions for voltage and current, the internal
impedance of the PBE can be determined. It should be noted that the derivation of the four impedance
elements, constituting coefficients in some of the equations, is much more involved than the solution of the
linear system of equations. It generally requires, e.g., the solution of partial differential equations, which is a
good reason for treating the two problems separately.

One case of a specific PBE has been considered as an example, viz., the laminated one shown in Fig. 1(b)
with one pair of piezoelectric layers, one pair of bonding layers and one core, all with the full length of the
PBE. Other cases covered by the three-port model may have additional piezoelectric, elastic or viscoelastic
pairs of layers, and these pairs may have different lengths. Also, the constitutive properties may be different
for the materials of different pairs of piezoelectric layers. In this way, the geometrical and material properties
of the cross-sections may vary in the axial direction. On the basis of assumptions of plane cross-sections and
one-dimensional wave propagation, it is feasible to determine the impedance elements for such complex PBEs
even though the analyses may get much more involved than in the example.

The assumption that initially plane cross-sections remain plane means that the effect of shear deformation
of the bonding layers is neglected. This can be justified if the bonding layers are very thin, or the bonding
material is very stiff, or both. It should be noted that the effects of axial stiffness and inertia, taken into
account here for the laminated PBE, may be significant even if that of shear deformation is not. This is the case
if the modulus and density of the bonding layers are high enough. The use of one-dimensional analysis implies
that the significant wavelengths must be large relative to the transverse dimensions. In experimental studies
[15] with a laminated PBE of the same type as in the example, good agreement was obtained between
experimental and theoretical results when one-dimensional analysis was used and all effects of the bonding
layers were neglected.

The consistency of the models used has been confirmed by considering balances of electrical power and
energy fluxes associated with harmonic waves for a lossless PBE and an elastic bar. First, it has been shown
that such a PBE corresponds to an impedance matrix with imaginary elements. Then, for the process of wave
generation it has been shown that the electrical input power is partitioned equally between the energy fluxes
associated with the two harmonic waves generated in the bar. In the equivalent electrical circuit of Fig. 2(b),
the dissipation of power associated with the resistive part of the internal impedance Z£ corresponds to the
sum of these energy fluxes. In analogy with the terminology used for dipole antennas, this resistive part might
be referred to as the radiation resistance [18] of the PBE-bar assembly. Similarly, for the process of wave
damping, and under the additional condition of electrical impedance matching, it has been shown that half
of the mechanical input power is dissipated in the impedance load, and one quarter of it is made up of the
energy fluxes associated with each of the reflected and transmitted waves. In the equivalent electrical circuit of
Fig. 3(b), the dissipation of power in the resistive part of the internal impedance Zﬁt corresponds to the sum of
these energy fluxes.

It may appear surprising that in the process of wave damping the partition of power is independent of all
other conditions than the ones mentioned. In particular, it may seem strange that the power Pp =
(1 /R0)| Uint / 2| dissipated in the resistive part R, of the load remains the same even in the limit of vanishing
piezoelectricity, i.e., d,— 0, which implies Zy; = iX(; — 0. However, the explanation is given by the condition
for impedance matching, Zy = wa Due to the assumed fulfillment of this condition, the resistive part of the
loadis Ry «x X (2)1, and the voltage across this part of the load is ] Uint / 2‘ o Xo1. Therefore, the dissipated power
does not depend on Xj;. In practice, the validity of this independence is limited as the resistive part of the load
cannot be arbitrarily small.

Comparison of Figs. 4 and 5 gives an idea about the degree of mismatch of the load impedance Z, =
Ry(1 + iwty) to the internal impedance Zi’f,t at frequencies of importance for the wave damping results shown
in Figs. 6 and 7. Fig. 4 shows that when Ry = RLC and t, = t,, the matching condition Z, = Z,,, for
maximum delivery of electrical power to the load is not fulfilled at any frequency. This is normal as the real
and imaginary parts of this condition cannot in general be satisfied at the same frequency. Here, the real part
Re(Zy) = Re(ZE)) is approximately fulfilled below 7kHz and the imaginary part Im(Zp) = —Im(Z%)) is
satisfied only at the resonance frequency 27.8 kHz. In Fig. 5, these observations can be compared with the
spectra for the three incident waves N; used as input for the results shown in Figs. 6 and 7. These waves have
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durations t; = 0.5¢, t,; and 2¢,., and the important frequency ranges of their spectra are from DC up to about
100, 50 and 25kHz, respectively. The PBE and bar defined for the simulations have wave speeds 3300 and
5050 m/s. Therefore, the highest frequency of importance, 100 kHz, corresponds to wavelengths of 33 and
51 mm, respectively, which are much longer than the transverse dimensions of about 4 mm.

As shown by Fig. 6, the initial main part of the reflected wave Ny is first positive and then negative, while
that of the transmitted wave Ny is essentially positive and resembles the incident wave. Both waves are
followed by damped oscillating tails. These tails are explained by repeated wave reflections within the PBE due
to the mechanical mismatch between the PBE, with characteristic impedance Z =254 Ns/m, and the
external parts of the bar, with characteristic impedance Z; = Z, = 219 N's/m. The reflected wave starts at
the time # = 0 when the front of the incident wave arrives at the first mechanical interface. The main rise of the
transmitted wave at the second mechanical interface occurs at ¢ = ¢, after one transit time through the PBE.
However, a slow rise of the transmitted wave starts already at z = 0. This is because the electric field has been
assumed to be a function of time only, corresponding to infinite speed of electromagnetic waves.

As shown by Fig. 7, the voltage U, generated across the load, the current —i, driven into the load and the
power P, supplied to the load are all oscillatory. The oscillations are first built up and then they form tails, which
rapidly decay. The energy W, supplied to the load increases, while oscillating, up to the final level Wp
representing the energy dissipated in the resistive part of the load. The amplitude of the current —i, produced by
the shortest incident wave (¢; = 0.57,,) is considerably lower than that produced by the two longer waves (¢; = ,,
and 2t,,), which are similar. Correspondingly, the dissipated energy Wp = Ry f(;’o i(z) dz due to the shortest incident
wave is considerably lower than those produced by the two longer waves, which are similar. In particular, the
energy dissipated due to the shortest incident wave is less than half of that produced by the middle wave.

The observations made imply that the relative energy dissipation wp = Wp/W;is lower for the shortest and
longest incident waves than for the middle wave. For the shortest incident wave it is lower because relative to
the middle wave, W, is smaller by a factor two while Wp, is smaller by a factor larger than two. For the longest
incident wave, it is lower because relative to the middle wave, Wj is larger by a factor two while W) is
approximately equal. The three cases of incident waves discussed so far are marked with circles in Fig. 8,
which for different normalized load parameters Ry /RiDmC and 74/t show how the relative energy dissipation
wp = W/ Wp depends on the normalized duration ¢;/¢,, of the incident wave. For the shortest, the middle and
the longest incident waves the relative dissipation turns out to be wp = 2.7%, 3.6% and 1.7%, respectively.
For given load parameters Ry /RlatC and ty/t,, corresponding to one of the curves shown in the four
diagrams of Fig. 8, wp has a maximum for a certain duration #,/¢,. of the incident wave and approaches zero
for both short and long durations. When the time constant 7/t of the load increases from small to large, as it
does by two decades in each diagram, the maxima with respect to #;/t,, move from left to right. On the way, wp
first increases to a largest value and then decreases. When, finally, the resistive part Ry/RDC of the load
increases from small to large, as it does by one decade from the first diagram to the last, the maxima with
respect to t;/t,, and ty/t,, increase to a highest value and then decrease. In the numerical simulations carried
out, the largest relative energy dissipation wp = 8.1% was obtained for Ro/Ri]?f =5, to/t,y = 1 and t;/t,, = 1.7.
Higher values can be achieved, but they can never exceed the 50% obtained for a harmonic wave under the
condition of electrical impedance matching.

6. Conclusions

The main conclusions of this study can be summarized as follows: (i) A PBE with linear response can be
represented by a three-port system with one electrical and two mechanical interfaces or ports at which it can
interact with external active or passive devices. (i) As far as these interactions are concerned, and due to
symmetry and reciprocity assumed, the properties of the PBE are defined by four clements of a 3 x 3
impedance matrix. (iii) Principal advantages of the three-port approach are, on the one hand, that results for
different environments or uses can be derived without specifying the PBE, and, on the other hand, that the
characteristics of a specific PBE can be derived without reference to its environment or use. (iv) For a lossless
PBE constituting a part of an elastic bar and used for generation of harmonic waves, the electrical input power
is partitioned equally between the energy fluxes associated with two waves generated in the bar. (v) The
dissipation of power associated with the resistive part of the internal impedance of the PBE corresponds to the
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sum of these energy fluxes. (vi) For a lossless PBE constituting a part of an elastic bar and used for damping of
harmonic waves it has been shown that under the condition of electrical impedance matching half of the
mechanical input power supplied by an incident wave is dissipated in the load impedance, and one quarter of it
is made up of the energy fluxes associated with each of the reflected and transmitted waves. (vii) In the
equivalent electrical circuit, the dissipation of power in the resistive part of the internal impedance of the PBE
corresponds to the sum of these energy fluxes. (viii) A PBE with its electrical port shunted by a load impedance
can be represented as a system with two mechanical ports. (ix) In numerical simulations of damping of a bell-
shaped wave, the highest fraction of the wave energy dissipated was 8.1%. (x) Higher relative energy
dissipation can be achieved, but it cannot exceed the 50% obtained for a harmonic wave under condition of
electrical impedance matching.
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Appendix A. Derivation of the impedance matrix for the laminated PBE

The constitutive equations of the material of the piezoelectric layers a can be written as

Uy 4 N, U

—-d,—, D,=-d,— —, A.l
E, A, h, s a a A, + &4 ha ( )
where é(x, w) is the strain, D,(x, ®) is the electric displacement and N,(x, w) is the normal force acting in each
piezoelectric layer. Those of the materials of the bonding layers b and the core ¢ are

1 N, 1 N,

b—__ b s~ ¢ A.2a,b
e Eb Ab 2 e EC AC b ( a” )
where N »(x, w) and N(x, ) are the normal forces acting in these layers.
The charge on the electrodes of each piezoelectric layer is
. 2,
0,= D,w,dx. (A3)
—1)2

The current into the electrodes of the two piezoelectric layers is
i = 2iw0,. (A.4)
Elimination of Qu,ba and U, from Egs. (A.1), (A.3) and (A.4) gives

. N 1d P
Ry — 2R™ = A,E, (e +§ h—"Zfi()), (A.5)
where ]VZV =(1/]) ﬁ/liz N,dx is the average of N, over the length / of the PBE.
Compatibility requires
o= L0 (A.6)
im Ox

where 0(x, w) is the particle velocity. Substitution of Eq. (A.6) into Eq. (A.5) and averaging gives

. PO | dy _p»
(1—IAHN = ZM by — ) + 5AaEah—zfzo. (A7)
The equation of axial motion is
oN

i Apiwd, (A.8)
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where
N =2N,+2N,+ N, (A.9)
is the total normal force. Elimination of N,, N, and N, by using Egs. (A.2), (A.5) and (A.7) gives,
~  AE 00
N=——U+ot(vz—vl)+/310, (A.10)
iw Ox
where
k2zM d, ZE
o=244"44 =AE,- 2~ 4. A.lla,b
h DA ( )
Substituting Eq. (A.10) into Eq. (A.8) gives
o' .
The general solution of Egs. (A.10) and (A.12) can be expressed as
N = N,e7™ + N, 4 a(bs — 1) + Bio, (A.13a)
ZM( N e + N,e'). (A.13b)
ch

Substituting this general solution into the boundary conditions

N(—1/2,0) = Ni(w), (—1/2,0) = b1 (o), (A.l4a,b)
N(1/2,0) = Na(w), i(1/2, ) = tr(w) (A.14b.c)
and eliminating N » and N, gives the normal forces
. . ZM ZM
= Bip — D D A.15¢
== (o e )+ (o (vz))” (A1
? Z&% N Zch B
— B Al
Pio (“ * Sinh (yl))vl + (“ tanh () (A.15b)
at the mechanical interfaces. Eqgs. (A.1b), (A.3) and (A.4) give the current
A 2 [~ dihy rav
) = —& — Al
io 7 (Uo SaAaN“ ), (A.16)
at the electrical interface. Substituting Nav from Eq. (A.7) into this relation gives the voltage
~ 1 ZE . dh, ZM
0= i k2( 01 + 02) (A.17)

21—k2° tady 1 —

at the electrical interface. Comparison of Eqgs. (A.15) and (A.17) with Eq. (1) finally gives the elements of the
impedance matrix Z according to Eqs. (2) and (4).
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